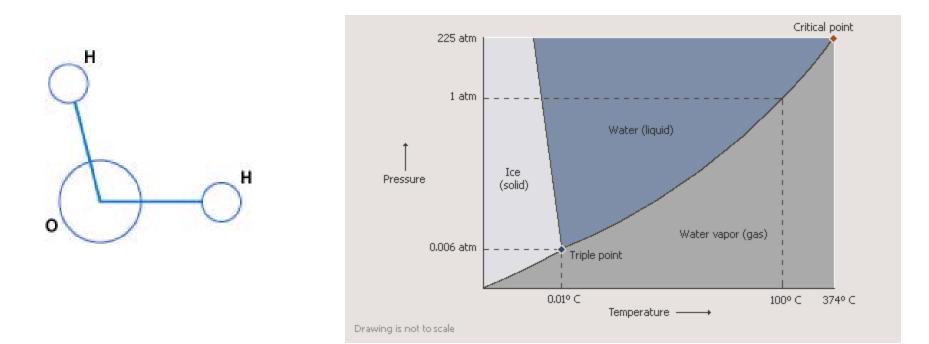
Welcome

Vaisala Humidity 101 – Humidity Theory, Terms & Definitions

Yumi Alanoly Vaisala Application Engineer

Agenda

- 1. Why does it help to understand humidity?
- 2. Dalton's Law
- 3. Vapor pressures
- 4. Relative humidity
- 5. Td, x, ppm, Tw, h



Page 2 / 11/10/08 / BEMD / ©Vaisala

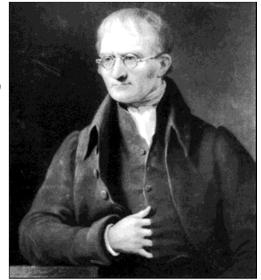
Water Vapor Theory - H₂O

- Exists in the three phases
- Which phase depends on the amount of thermal energy that is present

American Meteorological Society Glossary Hu-mid-i-ty

Humidity

1. Generally, some measure of the water vapor content of air.



Page 4 / 11/10/08 / BEMD / ©Vaisala

Dalton's Law

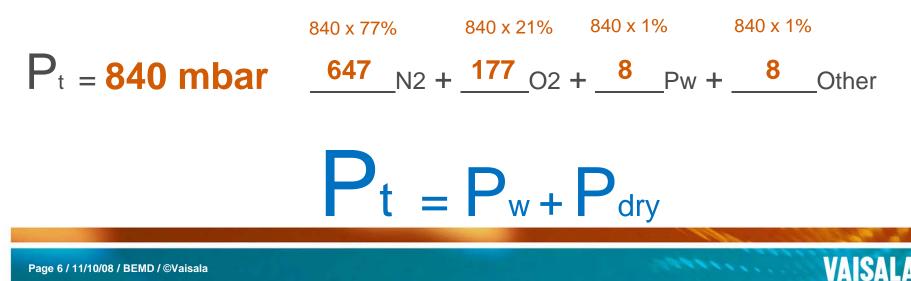
"The total pressure of a gas is equal to the sum of the different gases' partial pressures"

 $P_t = P_1 + P_2 + \dots P_n$

John Dalton

VAISALA

English chemist, meteorologist, physicist (1766 – 1844)


 $\frac{\text{air around us}}{P_t = P_{N2} + P_{O2} + P_w + P_{\text{misc.}}}$

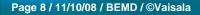
Practical Example of Dalton's Law

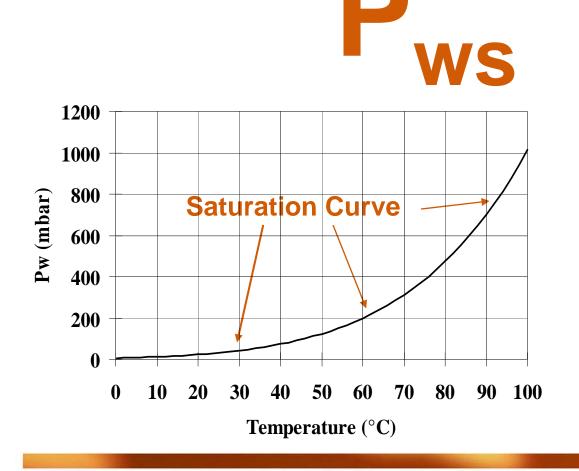
Nitrogen	77%
Oxygen	21%
Water vapor	1%
Other gases	1%
1000 mbar = 770 mbar	+ 210mbar + 10mbar + 10mbar

How does this change in Denver?

Definitions

Psychrometry


Partial Pressure of Water Vapor (psi,mbar,hPa,inhg...)


VAISAL

"The key parameter that affects all other humidity parameters"

- Note: The only two properties that can affect a change in P_w
 - adding or removing water vapor
 - changes in system pressure

Saturation Vapor Pressure (psi,mbar,hPa,in hg...)

On the saturation curve

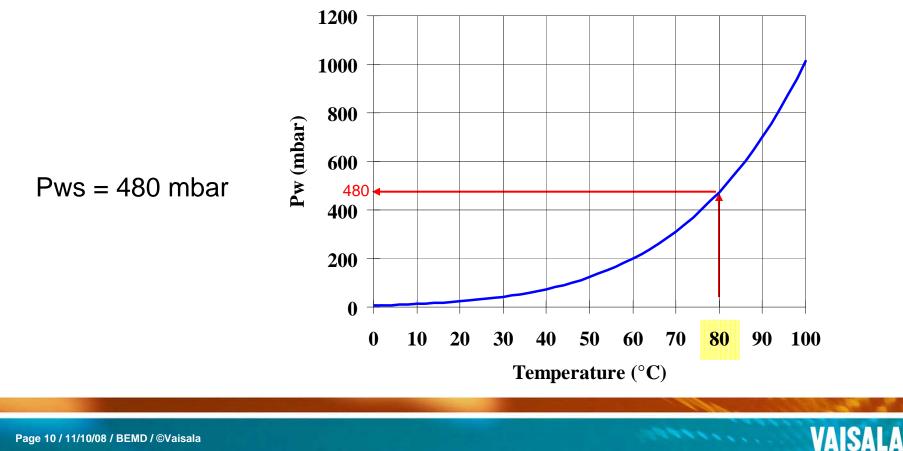
•evaporation and condensation are in equilibrium and occur at the same rate

 $\bullet P_w = P_{ws}$

•dewpoint = temperature

•wet bulb = dry bulb

•RH = 100%


Note: The only property that affects P_{ws} is temperature

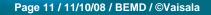
VAISALA

Page 9 / 11/10/08 / BEMD / ©Vaisala

P_{ws} Saturation Vapor Pressure

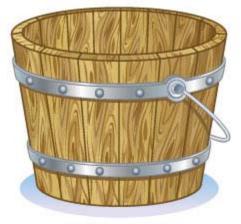
Pws - maximum vapor pressure or amount of water vapor that can exist at a given temperature. Expressed in units of pressure.

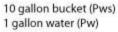
Relative Humidity (%)


RH

Relative humidity is the ratio of water vapor partial pressure present in a gas (P_w) to the saturation vapor pressure of water at that temperature [$P_{ws}(t)$]

VAISA


or


The amount of water vapor present in air (gas) expressed as a percentage of the amount needed for saturation at the same temperature.

Bucket Analogy

 P_{ws} = bucket size or max amount of water P_{w} = amount of water in the bucket

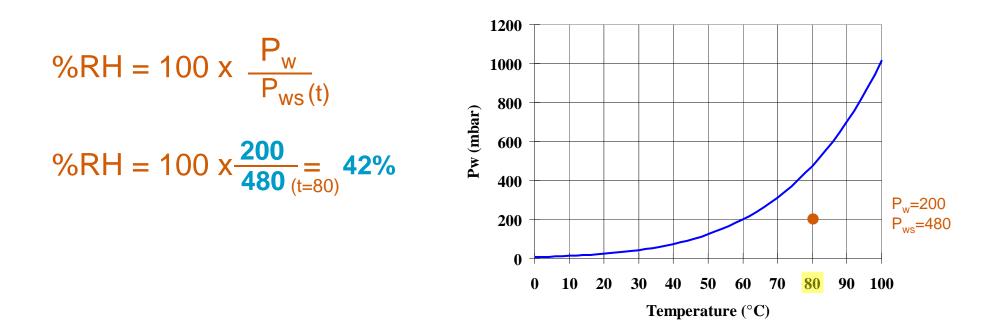
Relative fill = 1/10 10%

5 gallon bucket (Pws) 1 gallon water (Pw)

Relative fill = 1/5

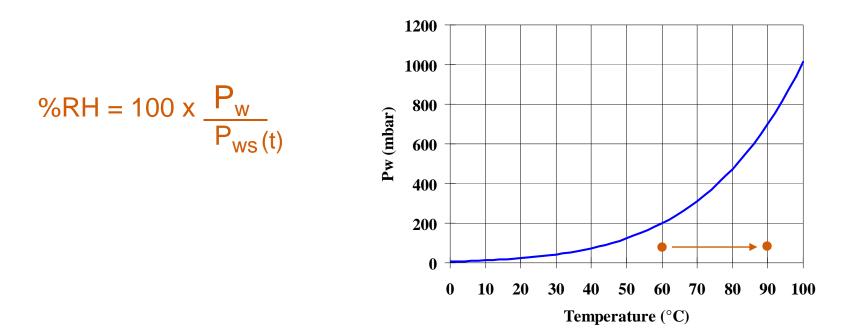
20%

Relative fill = 1/1 100%


VAISALA

1 gallon bucket (Pws) 1 gallon water (Pw)

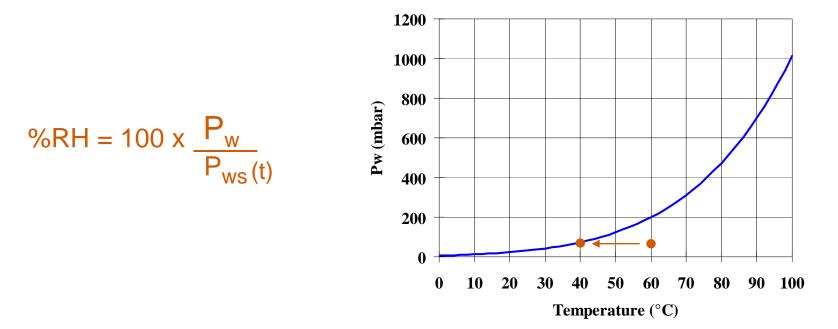
Relative humidity



Note: Relative humidity is strongly proportional to temperature and <u>its measurement is</u> <u>very sensitive to temperature differences.</u>

VAISALA

Page 13 / 11/10/08 / BEMD / ©Vaisala


Temperature and Relative Humidity

Page 14 / 11/10/08 / BEMD / ©Vaisala

Temperature and Relative Humidity

Page 15 / 11/10/08 / BEMD / ©Vaisala

Temperature and Relative Humidity – Rule of Thumb #1

Rule of Thumb #1*

-As temperature increases, air becomes drier (RH decreases)

-As temperature decreases, air becomes <u>wetter</u> (RH increases)

• drier and wetter are relative terms; applies to a closed system where pressure and water vapor content do not change

Page 16 / 11/10/08 / BEMD / ©Vaisala

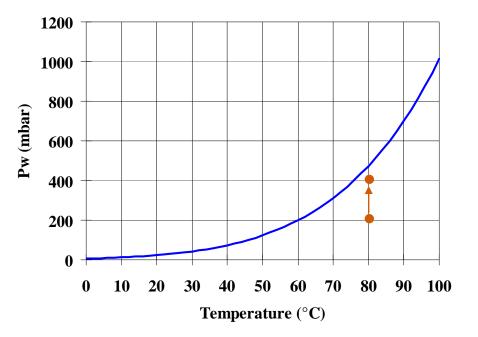
What about pressure and Relative Humidity?

Recall Dalton's Law of Partial Pressures $P_t = P_w + P_{dry}$

If double total pressure;

- then $2(P_t) = 2(P_w + P_{dry}) = 2P_w + 2P_{dry}$
- so Pw changes proportionately to overall pressure changes

VAISA


remember that Pws remains unchanged because T is unchanged

Pressure and Relative Humidity

 $P_t = 1000 \text{ mbar}$

We double the total pressure so $P_t = 2000$ mbar

What happens to Pw? Pws?

Page 18 / 11/10/08 / BEMD / ©Vaisala

Pressure and Relative Humidity – Rule of Thumb #2

Rule of Thumb #2*

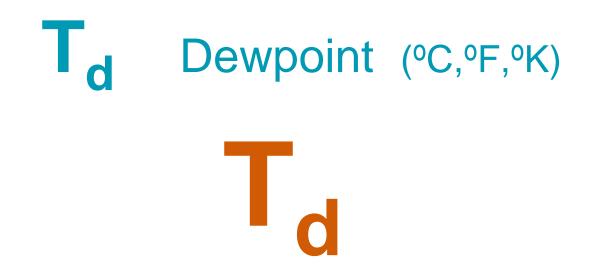
-As pressure decreases, air becomes drier (RH goes down)

-As pressure increases, air becomes wetter (RH goes up)

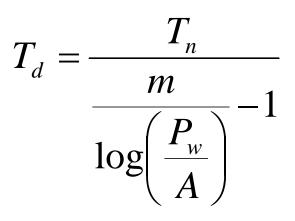
* drier and wetter are relative terms; applies to a closed system where temperature and water vapor content do not change

VAISALA

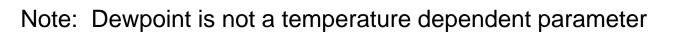
Page 19 / 11/10/08 / BEMD / ©Vaisala


Relative Humidity Application Example

Relative humidity is the common parameter in HVAC applications where comfort balanced with efficiency is the main concern.


The temperature to which a given portion of air must be cooled at constant pressure and constant water vapor content in order for saturation to occur

The temperature at which a moist gas is saturated with respect to a <u>plane</u> <u>surface of pure liquid water</u>


Page 21 / 11/10/08 / BEMD / ©Vaisala

Dewpoint


- changes with water vapor
- changes with pressure

VAISALA

Beer temperature = 38F

Glass temperature above the dewpoint – no condensation

Beer temperature = 38F

Glass temperature below the dewpoint – condensation appears

Page 24 / 11/10/08 / BEMD / ©Vaisala

VAISALA

Dewpoint & Pressure Rule of Thumb

Rule of Thumb

-As pressure increases, dewpoint temperature rises, air becomes more moist (RH increases)

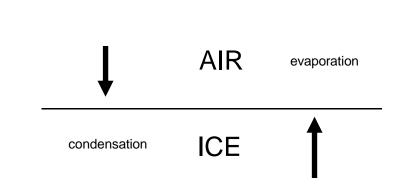
-As pressure decreases, dewpoint temperature goes lower, air becomes <u>drier</u> (RH decreases)

• drier and wetter are relative terms; applies to a closed system where water vapor content does not change

Page 25 / 11/10/08 / BEMD / ©Vaisala

The temperature to which a given portion of air must be cooled at constant pressure and constant water vapor content in order for saturation to occur

VAISAL


The temperature at which a moist gas is saturated with respect to a <u>plane surface of</u> <u>pure ice</u>

Note: T_{d/f} is a Vaisala term which means dewpoint above 32°F and frostpoint 32°F and below

Page 26 / 11/10/08 / BEMD / ©Vaisala

Dewpoint versus Frostpoint

<u>Dewpoint</u>
-0.11° C
-5.64° C
-11.23° C
-22.25° C
-33.09° C
-43.74° C
-54.24° C
-64.59° C
-74.88° C
-85.29° C
-96.37° C

Page 27 / 11/10/08 / BEMD / ©Vaisala

Td/f – gives you dewpoint at 32 degrees (F) and above and frostpoint below 32 degrees (F)

Td – gives you dewpoint across the entire range of temperatures and assumes supercooled water below 32 degrees (F)

Application Example - compressed air

compressor picture courtesy of Atlas Copco

VAISALA

Dewpoint is the common parameter for measurement in compressed air systems and plastics production feed drying

Page 29 / 11/10/08 / BEMD / ©Vaisala

X Mixing Ratio or Humidity Ratio (g/kg, gr/lb)

-the ratio of the mass of water vapor per unit mass of dry air to which it is associated

 $X=B*P_W/(P_{tot}-P_W)$

B=621.9907 g/kg

Note: mixing ratio is an absolute measure, not affected by temperature or pressure

VAISALA

Page 30 / 11/10/08 / BEMD / ©Vaisala

Application Example – drying process

Mixing ratio can be used as a measure to help determine drying time where moisture content of a product is important like paper drying or dog biscuit drying.

VAISALA

Page 31 / 11/10/08 / BEMD / ©Vaisala

ppm_v ppm_w

parts per million (volume/weight)

ppmv

$$\mathsf{PPM}_{v} = \frac{\mathsf{P}_{w}}{(\mathsf{P}_{tot} - \mathsf{P}_{w})} 10^{6}$$

- volume of water vapor per total volume of dry gas

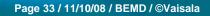
$$PPM_{m} = \frac{M_{w}P_{w}}{M_{d}(P_{tot} - P_{w})} 10^{6}$$

VAISALA

- mass of water vapor per total mass of dry gas

Note: ppm is an absolute measure, not affected by temperature or pressure Mw is molecular mass of water ; Md is molecular mass of dry air

ppm_v and ppm_w


<u>Td/f</u>	PPMw	<u>PPMv</u>
-40.00	14	23
-35.00	24	39
-30.00	42	67
-25.00	69	111
-20.00	113	181
-15.00	181	290
-10.00	284	456
-5.00	439	706

$$PPM_{v} = \frac{P_{w}}{(P_{tot} - P_{w})} 10^{6}$$

$$\mathsf{PPM}_{\mathsf{m}} = \frac{\mathsf{M}_{\mathsf{w}}\mathsf{P}_{\mathsf{w}}}{\mathsf{M}_{\mathsf{d}}(\mathsf{P}_{\mathsf{tot}} - \mathsf{P}_{\mathsf{w}})} 10^6$$

VAISALA

Mw/Md = .621980

Application Example – glove box

ppm is sometimes used in dry environments where very precise absolute measurement is required such as in a glove box or clean room

VAISALA

Page 34 / 11/10/08 / BEMD / ©Vaisala

a Absolute Humidity (g/m³, gr/ft³, lbs/MMcf)

- the mass of water vapor per unit volume of moist air
- the density of the water vapor

 $A=C^*P_W/T$ (g/m³),where

C=constant 216.679 gK/J P_W=vapour pressure in hPa T=temperature i K

Page 35 / 11/10/08 / BEMD / ©Vaisala

Application Example – natural gas

Absolute humidity is the common parameter for measurement of moisture content in natural gas (in the U.S.)

VAISALA

Page 36 / 11/10/08 / BEMD / ©Vaisala

T_w Wet bulb temperature (°C,°F)

the temperature indicated by a thermometer sheathed in a wet cloth as air is passed over it

Page 37 / 11/10/08 / BEMD / ©Vaisala

Application Example – evaporative cooler or swamp cooler

By comparing the wet bulb temperature to the dry bulb temperature we can determine cooling capacity of an evaporative cooler.

VAISALA

Page 38 / 11/10/08 / BEMD / ©Vaisala

h Enthalpy (kj/kg; btu/lb)

• Measure of the total energy in a moist gas

- heat content
- sum of the latent heat + sensible heat

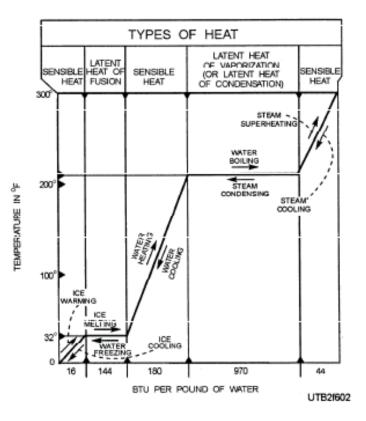


Figure 6-2.—Relationship between temperature and the amount of heat required per pound (for water at atmospheric pressure).

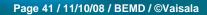
VAISALA

Application Example - HVAC

VAISALA

Enthalpy is a useful measurement for determining HVAC equipment size and efficiency

Page 40 / 11/10/08 / BEMD / ©Vaisala


Psychrometric Terms

 relative humidity 	RH	[%RH]
 partial pressure of water vapor 	P_{w}	[mbar; in.Hg, etc.]
 saturation pressure 	P_{ws}	[mbar; in.Hg, etc.]
 dewpoint/frostpoint 	T _{d/f}	[°C; °F]
 absolute humidity 	а	[g/m ^{3;} gr/ft ³]
 mixing ratio/humidity ratio 	X	[g/kg; gr/lb]
 wet bulb temperature 	T_{w}	[°C; °F]
– ppmv		
– ppmw		

enthalpy

h [kJ/kg; Btu/lb]

VAISALA

Summary

- 1. Water vapor theory
- 2. Dalton's law of partial pressures
- 3. Pw & Pws
- 4. RH = Pw/Pws
- 5. Temperature and RH Rule of thumb

VAISALA

- 6. Pressure and RH Rule of thumb
- 7. Absolute parameters x, ppm

Vaisala Humidity Resources

- On-line Humidity Calculator <u>www.vaisala.com/humiditycalculator</u>
- Slide Rule Calculator to order <u>http://forms.vaisala.com/forms/RequestSlideRule</u>
- Psychrometric Chart <u>http://forms.vaisala.com/forms/RequestPsychChart</u>
- Humidity Conversion Formulas <u>http://forms.vaisala.com/forms/humidity_conversion</u>

VAISAL

For expert assistance with your humidity measurement Request info: <u>Click here</u> to fill out 'Request Contact' form Direct telephone: 800-408-9454

Website: <u>www.vaisala.com</u>

Next Webinar – Humidity Sensor Technology - Tutorial

Wednesday, June 26th, 9:30AM MDT

Humidity Sensor Technology

For full Webinar Schedule info please <u>click here</u>.

Everyone who registered for Humidity Theory will get the invitation for Sensor Technology.

You will receive a follow up email with all of the resource links & link to recording.

VAISA

Page 44 / 11/10/08 / BEMD / ©Vaisala

Thank you! This concludes the webinar.

Follow-up email will arrive shortly with the resource links & further contact information.

Page 45 / 11/10/08 / BEMD / ©Vaisala