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Executive Summary

Vaisala has conducted a  

multi-project validation study of its 

unique wake loss estimation method, 

using one year of post-construction 

operational data from seven North 

American onshore wind energy 

projects in flat terrain. Observed 

wake losses were derived from the 

wind project SCADA data using a 

“reference set” approach to estimate 

the unwaked power. A mesoscale 

model simulation was used to 

determine the spatial variability of 

the unwaked wind field so that its 

signature could be removed from the 

observed estimate of wake losses.  

The pre-construction wake loss 

estimates were made with Vaisala’s 

time series-based method utilizing 

the Larsen single turbine wake 

model. Finally, error metrics were 

calculated describing the difference 

between the modeled and observed 

wake losses. The results showed that 

the observed wake losses were 21% 

larger than predicted, on average, 

indicating the need for a calibrative 

correction to the wake loss estimate. 

If the 21% bias is removed, the 

standard deviation of the remaining 

project-to-project random error is 

16% of the observed wake loss. This 

is an encouraging result, considering 

that consultants typically assume 

uncertainties ranging from 20% to 

30% of the total estimated wake 

loss. A caveat to both the mean bias 

and uncertainty results is that it is 

based on a relatively small sample 

size of seven projects, which yields 

large 90% confidence intervals on 

each statistic: +11% to +30% for the 

mean bias error, and also 11% to 30% 

for the uncertainty. Going forward, 

Vaisala intends to update the study 

with a larger sample size by adding 

new operational projects to the 

validation data set and thereby 

decrease uncertainty in the results.
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Depending on the layout and environmental 

conditions, the associated long-term average 

energy loss due to wakes can be >10% of the 

project’s gross energy production. In fact, the wake 

loss is often the single largest energy loss for a 

wind project, so accurate estimation of the wake 

loss is paramount for reliable pre-construction 

energy yield estimates. However, the wake loss is a 

challenging calculation that depends on accurate 

prediction of the flow meteorology (wind speed 

and direction, stability, and turbulence), as well as 

accurate modeling of wake behavior (including 

wake generation, expansion and dissipation, and 

combination with other wakes). The difficulty in 

estimating wake losses is reflected in the large 

uncertainty typically assigned to wake losses. 

Nygaard (2015) found from a survey of consultants 

that uncertainties for European offshore projects 

range from 25% to 60% of the estimated wake loss. 

For onshore projects in North America, consultants 

assign somewhat lower uncertainties, typically 20% 

to 30% of the estimated wake loss.

In light of the importance of the wake loss to pre-

construction energy yield estimates, the challenge 

in calculating it, and the large uncertainty assigned 

to it, wake loss estimation methods must be 

accompanied by well-designed validation studies to 

establish the industry’s confidence in the methods. 

Many such studies can be found in the literature and 

conference presentations. These studies fall loosely 

into three categories: single turbine, aligned turbine, 

and full project studies. Single turbine studies use 

wind speed or power measurements in the wake of 

a single turbine, in specific wind speed, direction 

and turbulence conditions, to study wake behavior 

and to validate the outputs of single turbine wake 

models. Similarly, aligned turbine studies look at 

wakes aligned along or across straight, regularly 

spaced rows of turbines, to examine how interacting 

wakes behave, and how this behavior is captured 

by wake loss models applied to multiple turbines. 

As with single turbine studies, the data in these 

studies is filtered for specific speed, direction, and 

turbulence conditions, to pinpoint how the model 

behaves as a function of those conditions. A recent 

validation study by Archer (2018) provides a good 

review of the results of several single turbine and 

aligned turbine studies that were used to compare 

the most regularly used engineering wake models.

Far less common are studies in the the third 

category, the full project study, especially those 

that validate wake loss estimates at three or more 

projects. A full project study is one in which SCADA 

data is analyzed, for periods of approximately a 

year or more, to estimate the actual, long-term 

energy loss due to wakes, under the full range of 

conditions the wind project encounters during that 

time period; and then compare the observed wake 

loss to the pre-construction wake loss estimate. 

These studies are uncommon for several reasons. 

Introduction

When wind flows past a wind turbine, the turbine produces a wake of reduced wind speed and enhanced 

turbulence, which can persist tens of kilometers downwind. In a wind project, wakes from upwind turbines often 

align with downwind turbines, and thereby decrease the energy produced by the waked downwind turbines. 

Three different depictions of wind turbine wakes, as condensation plumes visible to the eye, as radar-measured 

deficits in wind speed, and as modeled deficits in wind speed, are shown in Fig. 1 (for different wind projects). 

Figure 1. Three depictions of wind turbine wakes. Left: Condensation plumes produced by turbulence within turbine wakes in 

the Horns Rev offshore wind project in the North Sea. Photo: Christian Steiness, Vattenfall. Middle: Wind speed deficits within 

turbine wakes measured with the Texas Tech University Doppler Ka-band radar at a wind project in Texas. Downloaded from 

depts.ttu.edu/nwi/research/radar-research. Right: Wind speed deficits simulated for the Lillgrund offshore wind project in the 

Øresund, using the Jensen (1983) model with wake decay constant of 0.04 (from Smith et al. 2012).
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First, they are difficult to carry out. SCADA data 

is difficult to obtain and work with, and varies 

in format and quality from project to project. 

Additionally, wake losses are difficult to tease out of 

the SCADA data under the full diversity of wind flow 

and weather that occurs throughout the year, for 

arbitrary project layouts. Wake losses are especially 

cumbersome to extract from onshore projects, 

with irregular layouts and the added complication 

of spatial wind variability due to terrain and 

land surface effects. The particular challenge of 

validating wake losses for onshore projects explains 

why the vast majority of wake studies (of all 

three categories) are performed at offshore sites, 

where unwaked winds are more uniform and wake 

signatures more identifiable. Yet onshore wind still 

comprises a large majority of both established and 

newly developed wind energy capacity worldwide, 

and validation studies should reflect this reality with 

representative cases of onshore wake behavior. 

Finally, multi-project studies derive their value not 

from detailed insights into the actual or modeled 

behavior of wakes (as with single or aligned 

turbine studies), but by establishing a statistical 

error distribution of wind project wake loss 

estimates. The conventional approach to estimating 

uncertainty is the “forward mode,” in which 

component uncertainties are propagated through 

the entire wake loss estimation process. However, 

that approach typically requires many guesses at 

unknown component uncertainties (Nygaard 2015). 

The alternative is the empirical approach advocated 

here, made possible by a multi-project validation 

study. The mean of the observed error distribution 

indicates the overall bias in the wake loss method 

(which, if desired, can be removed through 

calibration); and the standard deviation indicates 

the project-to-project uncertainty. Of course, the 

confidence intervals on such estimates is inversely 

related to the sample size, which presents the final 

difficulty: one must perform the validation not for 

one or two projects, but ideally on a great number 

of projects. This has proved impractical to date, 

and currently the bar is set by Nygaard (2015), who 

accumulated a data set from ten offshore projects. 

After that, the sample sizes of other studies drops 

off rapidly. Walker (2016) examined three offshore 

sites and Angot (2017) studied two offshore sites. 

Nygaard’s and Walker’s studies both showed 

tantalizing evidence that actual uncertainties are 

not as large as consultants have been assuming and 

may actually be <20% of the estimated wake loss.

The purpose of the present study is to validate a 

specific wake loss estimation method: the time-

series wake loss method currently used by Vaisala 

for project wind energy yield assessment. To 

contrast the dearth of onshore projects included 

in previous multi-project studies, this study 

examined exclusively onshore sites. It used a NWP-

based approach to quantify non-wake-induced 

(primarily terrain-induced) horizontal variability of 

wind resource, and to eliminate its contaminating 

signature from the SCADA-based estimates of 

measured project wake losses. The sample size 

in this study was seven projects, though that is 

anticipated to grow, now that the methodology has 

been established. Seven projects are not sufficient 

to precisely quantify the bias and uncertainty of 

Vaisala’s method, but can yield indicative results. 

Confidence intervals on both bias and uncertainty 

error statistics are included and account for the 

relatively small sample size of the study.

Vaisala’s Wake Loss Estimation 
Method

Vaisala’s method for estimating project wake losses 

is summarized in Table 1.  

 

Single turbine 
wake model

Larsen (1988)

Calculation
Upwind-to-downwind, considering both 
ambient and waked TI in wake recovery

Wake 
combination

Root mean-squared summation

Temporal 
aggregation

Time series calculation, using hourly output 
from ~30-year mesoscale numerical weather 
prediction simulation

Static inputs
Turbine coordinates, rotor diameter, hub 
height, and thrust curve

Time varying 
inputs

Hub-height wind speed, wind direction, and 
ambient turbulence intensity

Table 1. Specifications of Vaisala’s wake loss estimation method. 

The unique aspect of the approach is the calculation 

of wakes in a full time series framework, where 

the wake model is run using specific conditions 

of wind speed, wind direction, and turbulence 

intensity (TI) at each hourly time point of a ~30-

year historical period. The time series framework 

requires more computation than the conventional 

method of running the wake model for a limited set 

Vaisala Wake Loss Estimation
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of wind speed and direction conditions and taking 

a weighted aggregate of those results using the 

speed histogram and wind rose bin frequencies. 

The benefit of the time series method is the 

specification of exact meteorological conditions 

at each time point. In particular, the ability to 

include the full time variability of TI leads to a more 

accurate representation of the nonlinear relationship 

of wakes to TI. The Vaisala wake model employs the 

single-turbine model developed by Larsen (1988) 

(Fig. 2a), which has the desirable feature that wake 

recovery is directly dependent on TI, in contrast to 

the more commonly used Jensen (1983) model that 

has a user-set wake decay constant.  

 

 

 

 

 

 

 

 

Overlapping wakes in Vaisala’s method are 

combined with a root-sum-squared addition. This 

generally leads to amplified wind speed deficits 

where many wakes combine (e.g., in the top right 

section of Fig. 2b), compared to the more common 

“choose the largest” approach. 

Gunn (2016) suggests that while “choose the 

largest” may work best for wakes aligned along a 

linear row of turbines, it may not be appropriate for 

arbitrary layouts and wind directions. Vaisala does 

not employ an additional “large array” reduction 

to the waked wind speed. This choice was based 

on early validation work at a large North American 

wind project (McCaa 2013), where Vaisala found 

that wake model errors at deep interior turbines 

were not biased relative to those at shallow interior 

turbines.

Validation Method

Wind projects

The study data set consists of seven projects, all 

over flat agricultural or prairie terrain in central 

North America. Due to nondisclosure agreements, 

we cannot provide project-specific characteristics. 

As a whole, the projects ranged in nameplate 

capacity from 60 to 500 MW, and in turbine 

count from 30 to 300. Five of the projects had 

elongated layouts, and two had more circular or 

confined layouts. Data from the projects consisted 

of approximately one year of turbine power, nacelle 

wind speed and direction, and wind speed and 

direction from one or more permanent met towers 

or remote sensing devices. Temperature and 

pressure data were either provided by the project 

owner or extracted from MERRA2 reanalysis data.

Data preparation

Basic quality control (QC) checks were applied 

to the meteorological data, such as range bounds 

and flat-line removal. Air density (needed for 

conversions between wind speed and power) was 

estimated at every turbine and time point using 

temperature and pressure measurements, and an 

adjustment for elevation and hub height. A time 

series of project-average wind direction was derived 

from a weighted median of nacelle orientations and 

met tower vane measurements. Using that project-

average wind direction, unwaked met towers and 

turbines were identified at each time point, and a 

project-average unwaked wind speed time series 

was derived, also using a weighted median of 

available wind speeds from unwaked met towers 

and turbines. While many turbines clearly report 

inaccurate speed and direction values, there is 

typically a cluster of values around the correct 

value, and so the median performs well at selecting 

a reliable representative value.

QC of the power data was performed as follows. 

Ideally, SCADA data would identify times when 

turbines were not in a state of normal operation. 

However, SCADA flags for different operational 

Figure 2. (a) The wind speed deficit pattern in the 

Larsen (1988) single turbine wake model (adapted from 

Renkema 2007).

Figure 2. (b) A depiction of wind speed deficits 

for an entire wind project, using Vaisala’s Larsen-

based wake model.
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states were often missing, not clearly defined, 

or inaccurate. Nacelle wind speeds were also 

frequently missing or inaccurate. Therefore, QC’ing 

the power data based on either SCADA flags, or 

based on bad points on a scatter plot of turbine 

power vs. nacelle speed, was found to be either 

unreliable or too aggressive in eliminating good 

power data. Therefore, it was decided to QC the 

turbine power data based only on the power itself, 

and its relationship to the more reliable project-

average unwaked wind speed estimate described 

above. Any turbine power values that were clearly 

derated (i.e., the appearance of a derating “shelf” on 

the power versus speed scatter plot) were flagged 

as invalid. Additionally, polygons were defined that 

enclosed plausible values on the turbine power 

versus project-average unwaked wind speed scatter 

plot, allowing liberal room beneath the power curve 

for wake-reduced power. All turbine power values 

outside the plausible area were flagged as invalid. 

Finally, all turbine reports of zero power were 

flagged as invalid. Most of these zero power reports 

were likely correctly reported times of below cut-in 

windspeed, but many occurred when wind speeds 

were well above cut-in, meaning the turbine was 

either not operating or not properly reporting its 

power, and it was difficult to distinguish these cases. 

Therefore, we chose the more aggressive approach 

of flagging all zero power instances as invalid. The 

implications of this decision are discussed a bit later.

Estimation of observed unwaked and 
waked power

With the power data QC completed, the next step 

is to define the project unwaked and waked power 

at each time point. The waked power is just the 

sum of all valid power values in the wind project. 

At least 90% of the turbines had to report a valid 

power, or else that time point was invalidated. The 

unwaked power is estimated by a method similar 

to that used in Nygaard (2015), Walker (2016), and 

Angot (2017). Based on the project-average wind 

direction, a “reference set” of turbines is defined, 

which are unwaked and have valid power at that 

time, as illustrated in Fig. 3. The reference set had to 

include a minimum of 5 unwaked turbines with valid 

power data, or else that time point was invalidated. 

The unwaked power at that time point was then 

defined as the mean power of the reference set, 

times the total number of valid turbines in the wind 

project farm at that time point. Two additional time 

filters were applied: a time point was invalidated if 

either the air density or project-average wind speed 

could not be estimated from available data at that 

time point.

Effects of data filtering

The effects of the power data filtering are 

summarized in Table 2. 

Filtering step

Percent 
of turbine 
time points 
remaining

Percent 
of energy 
remaining

After removal of missing and out 
of range power values:

98% 100%

After removal of de-rated power 
values:

97% 99%

After removal of all turbine 
time points for which power is 
inconsistent with project-average 
wind speed:

90% 95%

After removal of all turbine time 
points with zero power:

74% 95%

After removal of times lacking 
minimum number of valid turbines 
in either the full project or 
reference set:

66% 87%

 Table 2. Effects of various data filtering steps, in terms of percent of 

total turbine time points remaining, and total energy remaining, after the 

filtering step is applied. 

Missing and out of range power values were 

relatively infrequent, so their removal eliminated 

only 2% of turbine time points. Removal of clearly 

de-rated power values removed and additional 1% 

of turbine time points and of total energy. More 

substantial was the removal of power values that 

were inconsistent with the project-average unwaked 

wind speed, but this step still left 90% of turbine 

time points and 95% of total energy. Invalidation 

of all zero-power turbine time points reduced the 

Figure 3. A schematic illustrating the “reference set” 

method for estimating unwaked wind speed. A reference 

set of unwaked turbines are chosen if they occupy an 

unwaked location relative to the current wind direction, and 

have a valid power measurement at the current time. 
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turbine time points to 76% of the full period of 

record, a considerable reduction, but of course had 

no effect on removed energy. Finally, time filtering 

based on a minimum number of valid turbines in the 

project as a whole (at least 90% of total turbines) 

and in the reference set (at least 5 turbines) 

reduced both turbine time points and total energy 

by and additional 8%. It was at this step that we 

were concerned that the aggressive invalidation of 

all zero-power turbine time points might push too 

many of the time points below these two availability 

thresholds, and leave too few valid time points. 

However, 2/3 of the time points remained, and 

nearly 90% of the energy remained in the data set 

after this filtering step was taken, so it was deemed 

to be a sound approach.

Wake loss metrics

Following previous studies, we express wake losses 

in two ways. The first is termed “relative power” 

or “array efficiency”, and is the ratio of energy the 

wind project actually produces with wake effects 

included to the energy it would produce if all 

turbines experienced unwaked winds,  

or E
waked

/E
unwaked

. It can either be given as a 

dimensionless ratio or a percent, with a value less 

than 1.0 or 100% indicating waking. The second 

is termed the “wake loss”, which is the difference 

between the unwaked and waked energy, as a 

fraction of the unwaked energy, or (E
unwaked

 — 

E
waked

)/E
unwaked

. It is usually given as a percent, with 

a positive value indicating waking. Both quantities 

can refer to the wind project power at an instant 

in time, or to the energy aggregated over some 

period of time. They can also be calculated for data 

binned by other variables, such as wind direction. 

However, to aggregate a correct long-term value for 

the wind project as a whole, the order of operations 

is important. First the waked and unwaked energies 

should be aggregated, then the ratios computed.

Examples of the array efficiency calculation for 

two projects (“#3” and “#6”), binned by wind 

direction, are depicted as light blue dots in Fig. 4. 

Both projects have elongated turbine layouts, and 

to keep the projects anonymous, the wind direction 

is shown relative to the orientation of the short 

axis of the project, rather than relative to north. As 

expected, the strongest waking (lowest values of 

array efficiency) occurs for directions roughly plus 

and minus 90 degrees from the short axis, or in 

other words, when the air flow is along the long axis 

of the project. However, there are many directions 

(especially for project #3) for which the array 

efficiency is > 1.0, which is not physically plausible 

if the array efficiency (as defined above) is being 

affected only by wakes.

Spatial adjustment

The explanation for the apparent array efficiencies > 

1.0 is that the array efficiency is not being affected 

only by wakes. Despite our best efforts to choose 

projects for the validation study over flat terrain, 

the reality is that most projects are built on some 

sort of local topographic maximum, however 

subtle, where wind speed is slightly higher than 

over the surroundings. To investigate the effects 

of horizontal variability of unwaked wind resource, 

Vaisala conducted high-resolution mesoscale 

numerical weather prediction (NWP) simulations of 

each project for 1 year. These simulations revealed 

that, in addition to the expected speed maximum at 

the top of the topographic maximum, there was also 

a distinct tendency for unwaked wind speeds to 

decelerate on the windward side of the topographic 

maximum (where the “front row” turbines are 

located), and to accelerate on the leeward side 

(where the rear-most turbines are located). This 

wind pattern is familiar to meteorologists as 

“windward blocking” and “downslope acceleration,” 

an expected dynamical response to stable flow over 

a mountain barrier. Here, the “mountain barrier” is 

an almost imperceptible topographic ridge or rise, 

but produces mean speed deviations of up to ±10% 

in some cases. The pattern tends to counteract the 

typical pattern of waking, and thereby contaminates 
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our observed wake loss metric by lowering the estimated unwaked power (by lowering the power of the 

reference set) and increasing the estimated waked power (by increasing the power of the rear turbines). A 

similar pattern occurs for every wind direction to varying degrees, so the tendency is to reduce the wake loss (or 

even produce “wake gain”) to some degree in every direction.

To account for this effect, we applied a correction that is somewhat similar to the approach described in Peña 

et al. (2018). First, we used the same mesoscale NWP simulations described above to develop a sector-wise 

speed-up ratio for every turbine (relative to the mean unwaked wind speed at all turbines). We then used an 

inverse power curve to convert turbine power values to wind speed, and divided that wind speed by the sector-

appropriate speed-up ratio at each time, to estimate a new wind speed that is due only to wakes and not to 

horizontal variability of unwaked wind speed. Finally, we used the forward power curve to convert the adjusted 

speed back to power, now adjusted for the sector-wise mean spatial wind pattern. This was done for every valid 

turbine power value at every time point. We then recalculated the wake metric, and the results for projects #3 

and #6 are shown as the dark blue dots in Fig. 4. Several improvements can be seen. At both projects, the array 

efficiency is now ≤100% in all direction sectors, as expected. At project #3, which is a narrow project with just a 

few long rows of turbines that are infrequently waked when the wind flows across the rows, the efficiencies are 

just below 1.0 for directions between -45 and +45 degrees, as expected, instead of the erratic behavior of the 

unadjusted array efficiency metric. Based on these results, we proceeded under the assumption that with this 

spatial adjustment, we were able to produce a reasonable estimate of the observed project wake loss that could 

be used for validation of Vaisala’s predicted wake losses. 

Comparison of observed and modeled array efficiencies

We ran our standard energy yield assessment process for the seven projects in the study. This process included 

both a mesoscale model simulation to map out the spatial variability of wind speed, as well as an application 

of the wake model in a time series mode, as described in section 2. This combination of modeling yielded time 

series of predicted waked and unwaked wind speeds at every turbine location, which were then passed into a 

power curve to convert to time series of power at each turbine location, and then aggregated across the entire 

project. The spatial variability of unwaked wind speed described above, which contaminated the observed 

estimate of wake loss, is already accounted for in the model estimated wake loss, so there is no need to apply 

a speed-up ratio-based adjustment for the modeled wake loss. The predicted wake loss metrics are then 

computed from the modeled power time series as described in section e above. The associated directionally 

binned array efficiencies from the modeled wakes are shown as red dots in Fig. 4. They tend to be slightly 

biased toward weaker wake losses, which will be discussed in the overall validation results in the next section. 

The directional details of the wake pattern, with maximum wake losses identified when the wind flow is along 

the long axis of the project, is generally captured, although the model estimate does not capture the full 

magnitude of the array efficiency “valleys.” Some of these differences in the details can be attributed to the 

wake model or its implementation, but some are also likely to result from errors in our estimates of the observed 

wake loss, which was produced by a complicated processing of SCADA data, and adjusted with imperfect 

simulations of the spatial variability of unwaked winds. 

Figure 4. Array efficiency as a function of project-average wind direction, for two sample wind projects in the study. Blue dots: Estimates 

of observed array efficiency using SCADA data, before (light blue) and after (dark blue) the adjustment for spatial variability of unwaked 

wind resource. Red dots: Model predicted array efficiency.
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Multi-Project Validation Results

The modeled and observed waked and unwaked 

energy can be aggregated over the entire period 

of record of production data for each of the seven 

projects in the validation study, to produce observed 

and modeled long-term wake losses for each project. 

These validation results are shown in Fig. 5, as a 

scatter plot of observed (y) versus modeled (x) 

wake losses. The 1-to-1 line, representing a perfect 

match between the model and observed, is shown for 

reference as a gray line. Most of the projects show the 

observed wake loss is stronger than the modeled wake 

loss, or in other words, the model underpredicted the 

strength of the wake loss. The slope of the best fit line 

is 1.2631.

As in Nygaard (2015) and Peña et al. (2018), we 

define the relative wake model error as the difference 

between the observed and modeled wake loss, as a 

fraction of the observed wake loss,  

or ε = (L
observed

-L
modeled

 )/L
observed

, where L is the wake 

loss as defined in section 3e. Based on this definition, 

the relative wake model error is related to the slope 

(m) of the best-fit line in Fig. 5 by the formula 

Using this formula, the mean relative wake model 

error implied by the 7-project result is 1 – 1/1.2631, or 

+21%. In other words, observed wake losses are, on 

average, 21% stronger than predicted. As an example, 

for a project with a true wake loss of 10.0%, the 

pre-construction wake loss estimate with Vaisala’s 

current method would likely be 7.9%, resulting in an 

underperformance of 2.1% relative to the true  

gross energy. 

Based on these results, Vaisala is in the process 

of determining an adjustment to its wake loss 

method to calibrate and better align its estimates 

with observed wake losses as shown in this study. 

An important caveat is that this study has a small 

sample size of seven projects, which implies a 

large statistical uncertainty to the result. Using the 

standard Student’s t-based estimate of the 90% 

confidence interval for the population mean based 

on a sample mean of seven, the result is that the 

mean relative wake model error probably lies within 

the range +11% to +30%.

Finally, we consider the uncertainty of the wake 

loss estimate. Although the wake loss estimates 

are biased too weak compared to observed by 

21%, the remaining random error is actually quite 

small. The standard deviation of the relative wake 

model errors for the seven projects is 16%. This is 

considerably lower than the 20%–30% range of 

uncertainty typically assigned by consultants for 

North American onshore wind projects. This is an 

encouraging result, and echoes recent similarly 

encouraging findings in validation studies by 

Nygaard (2015) and Walker (2016). However, there 

are several reasons for caution. First, the small 

sample size implies a large confidence interval on 

the standard deviation. A Chi-squared calculation 

yields a 90% confidence interval for the standard 

deviation of 11%–30%. Second, the projects are 

all located onshore in North America, over flat 

agricultural and prairie terrain, so the validation 

data set is currently not very diverse. As the 

data set grows through ongoing accumulation of 

operational project data, we will specifically seek 

offshore sites and locations on other continents. 

A larger, more diverse data set will increase 

our confidence in the representativeness of the 

validation statistics, and will narrow the confidence 

interval on the uncertainty, perhaps enough to 

warrant decreasing the uncertainty of Vaisala’s 

wake loss estimation in the near future.

Figure 5. Scatter plot of observed project wake loss (y) 

versus predicted wake loss (x). Best-fit line forced through 

the origin (blue dashed line), as well as the associated 

equation, are also shown. Gray line is the 1-to-1 (“perfect 

prediction”) line, for reference.

.
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Conclusions

Vaisala has conducted a multi-project validation study of its time-series based wake loss estimation method, 

to provide indicative visibility into the overall bias and uncertainty in that method. The study included seven 

onshore wind projects of varying size, all in the generally flat central part of North America. Observed 

wake losses were calculated using the “reference set” method for estimating unwaked power. Due to subtle 

terrain-induced effects that tended to reduce wind speeds at the leading edge of the project  and enhance 

wind speeds at the rear of the project, the observed wake estimation method required a correction to 

remove this effect, which was accomplished using sectorized speed-up ratios for unwaked wind speeds 

derived from mesoscale model simulations. Once the horizontal pattern in unwaked wind speed was 

accounted for, the resultant wake loss estimate provided a good basis for model validation.

When compared to the observed wakes, the model-estimated wakes roughly captured the observed 

directional pattern of turbine array efficiency, although with some differences in the wake loss details by 

sector. The difference between observed and modeled wake loss at all seven projects, as a percent of the 

observed wake loss, was +21%, meaning the model was under-predicting the strength of the wakes (with a 

90% confidence range of 11% to +30%). Vaisala is in the process of determining an adjustment to its wake 

loss method to calibrate and better align its estimates with observed wake losses as shown in this study.

The validation results showed that, if the bias is removed, the remaining project to project random error in 

the wake loss estimates (as represented by the standard deviation of the project relative wake model errors) 

is 16%, with a 90% confidence interval of 11% to 30%. This is an encouraging result, considering that the wind 

energy consulting industry currently assigns uncertainties of 20% to 30% to the wake loss estimate for  

North American onshore wind projects. Vaisala hopes to increase its validation project sample size and 

diversity, so that we can eventually be confident in reducing our standard wake loss uncertainty below its 

current value of 20%.
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